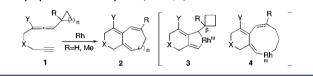


$C_{sp}^{3}-C_{sp}^{3}$ and $C_{sp}^{3}-H$ Bond Activation of 1,1-Disubstituted Cyclopentane

Chisato Mukai,* Yuu Ohta, Yuki Oura, Yasuaki Kawaguchi, and Fuyuhiko Inagaki

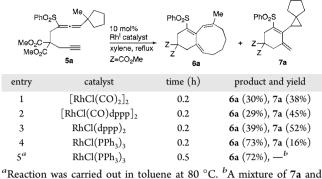

Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Supporting Information

ABSTRACT: The unprecedented $C_{sp^3}-C_{sp^3}$ bond cleavage of unactivated cyclopentane has been achieved. Rh^I-catalyzed cycloaddition of allenylcyclopentane-alkynes produced *in situ* the 9-cyclopentyl-8-rhodabicyclo[4.3.0]-nona-1,6-diene intermediates, which subsequently underwent [7+2] cycloaddition via β -C elimination, affording bicyclo[7.4.0]tridecatriene derivatives in good yields. Changing the Rh^I catalyst effected the C γ -H bond activation of the common 9-cyclopentyl-8-rhodabicyclo[4.3.0]nona-1,6-diene intermediate to produce the novel spiro[2.4]heptane skeleton in a site-selective manner.

 $igcar{0}$ mall-sized cycloalkanes are often of significant use from Synthetic points of view.¹ In particular, highly strained cyclopropane derivatives have been well recognized as useful and powerful acyclic C3-buliding blocks for transition-metalcatalyzed ring-forming reactions leading to various ring systems. Relief of the high strain energy (27.5 kcal/mol) of cyclopropanes² is thought to facilitate $C_{sp}^{3}-C_{sp}^{3}$ bond cleavage and make them an important C3-unit. Intramolecular Rh^I-catalyzed [5+2] cycloaddtion of vinylcyclopropanes^{3,4} with C-C π components, for example, efficiently produced the corresponding bicyclo [5.3.0] frameworks in which the terminal unactivated cyclopropane was incorporated into the 7-membered carbocycles. In sharp contrast to the ring-opening of cyclopropanes, one-carbon homologated cyclobutanes⁵ require an activating functional group directly attached to the 4-membered ring for their ring-opening.⁶ Thus, functionalized cyclobutanes such as cyclobutanone,^{5,7} hydroxycyclobutane,⁸ an alkylidenecyclobutane unit,⁹ or spiro[3.3]heptenone^{10a} and heptanone^{10b} units have been used, whereas the simplest cyclobutane without any other functional groups on its ring has been rarely employed as an acyclic C4-building block for transition-metal-catalyzed ringforming reactions.⁶ In fact, Wender^{7a} reported the efficient transformation of vinylcyclobutanone-alkene or -allene substrates into the corresponding bicyclo [6.3.0] compounds via Rh¹catalyzed [6+2] cycloaddtion and pointed out that this reaction does not work with vinylcyclobutanes as it does with vinylcyclobutanones. The smaller strain energy of cyclobutane (26.3 kcal/mol)¹¹ might reflect the lower reactivity of the cyclobutanes compared to the cyclopropanes. We recently disclosed that Rh^Icatalyzed cycloaddition of allenylcyclopropane-alkynes 1 (n = 1)afforded the bicyclo [5.4.0] undecatrienes 2 $(n = 1)^{12a}$ in the [5+2] ring-closing manner. A similar conversion was realized

Scheme 1. Rh^I-Catalyzed Cycloaddition of Allenylcycloalkane-alkynes (n = 1,2)



when the allenylcyclobutane-alkynes 1 (n = 2) were exposed to the Rh^I catalyst, producing the corresponding 8-membered bicyclic compounds 2 $(n = 2)^{12b}$ in high yields (Scheme 1). It is noteworthy that the simplest unactivated cyclobutanes were unexpectedly and smoothly incorporated into the 8-membered carbocycles. Production of 2 (n = 2) could tentatively be rationalized by initial formation of the rhodabicyclo[4.3.0] intermediate 3, followed by β -C elimination,⁶ which should release the strain energy (26.3 kcal/mol) of the cyclobutane,¹¹ giving rise to the 9-membered rhodabicyclic species 4. Reductive elimination of 4 would then provide the final products. Since the strain energies of the normal-sized cycloalkanes, namely cyclopentane and cyclohexane, are too low (6.3 kcal/mol and ~0 kcal/mol, respectively)¹¹ compared to those of the smallsized ones, utilization of the former as acyclic C₅- and C₆-building blocks has never been reported to date. This study describes preliminary results for the unprecedented incorporation of cyclopentane into 9-membered carbocycles via C-C bond activation by β -C elimination⁶ of the rhodabicyclo[4.3.0]nonadiene intermediates during the Rh¹-catalyzed cycloaddition of allenylcyclopentane-alkyne substrates.

Our initial attempt was performed using the allenylcyclopentane **5a** possessing a phenysulfonyl group on the allenyl moiety for screening the reaction conditions. Treatment of **5a** with 10 mol% [RhCl(CO)₂]₂, which was effective for ring-opening of allenylcyclopropane **1** (n = 1),^{12a} in refluxing xylene for 0.2 h surprisingly produced the desired bicyclo[7.4.0]-tridecatriene **6a** in 30% yield. In addition, the novel spiro[2.4]-heptane derivative **7a** was isolated in 38% yield (Table 1, entry 1). [RhCl(CO)dppp]₂, another effective catalyst for **1** (n = 1),^{12a} afforded a similar result [**6a** (29%) and **7a** (45%)] (entry 2). RhCl(dppp)₂ was the most suitable catalyst for ring-opening of allenylcyclobutane **1** (n = 2).^{12b} Thus, exposure of **5a** to 10 mol% RhCl(dppp)₂ resulted in the increased production of **7a** in 52% yield along with **6a** in 39% yield (entry 3). Several other catalysts, such as RhCl(PPh₃)₃, [RhCl(cod)]₂, [RhCl(cod)]₂/P(C₆F₅)₃,

Received: October 9, 2012 Published: November 12, 2012

 Table 1. Rh^I-Catalyzed Cycloaddition of Allenylcyclopentanealkyne 5a

unknown compounds was obtained in small amounts.

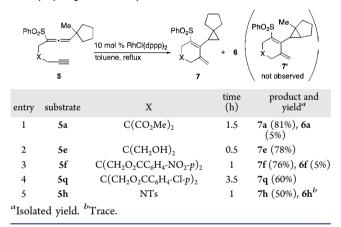
 $[RhCl(cod)]_2/P(Cy)_3$, and $[RhCl(cod)]_2/rac$ -BINAP, with or without a silver salt were examined, but most of them furnished poor results except for RhCl(PPh₃)₃. Indeed, **5a** was treated with 10 mol% RhCl(PPh₃)₃ in xylene for 0.2 h to produce **6a** in an improved yield (73%) together with **7a** in 16% yield (entry 4). Milder conditions (heating at 80 °C in toluene for 0.5 h) gave a similar result (**6a**, 72%) (entry 5). 1,2-Dichloroethane (DCE) and 1,4-dioxane, both of which are frequently employed in rhodium-catalyzed reactions, were examined instead of toluene, but no significant improvement was observed.

The best conditions [10 mol% RhCl(PPh₃)₃ in toluene at 80 $^{\circ}C$ were applied to several allenylcyclopentanes (Table 2). We first examined the ring-closing reaction of substrates 5b-f having a gem-disubstituent effect.¹³ Treatment of the bis-(phenylsulfonyl) derivative 5b with RhCl(PPh₃)₃ afforded the desired bicyclo[7.4.0] product 6b in 85% yield as the only isolated product (entry 1). Bis(MOM) compound 5c also produced the corresponding bicyclic compound 6c in 85% yield (entry 2). A similar result (6d, 78%) was obtained when the cyclic acetal derivative 5d was exposed to the standard conditions (entry 3). Free dihydroxyl compound **5e** could be converted into bicyclic 9-membered 6e in 51% yield (entry 4). Although a higher reaction temperature (xylene reflux) was needed, the bis(p-nitrobenzoyloxymethyl) compound 5f gave 6f in 53% yield (entry 5). X-ray analysis of 6f unambiguously established its structure having a bicyclo [7.4.0] tridecatriene skeleton (see SI for details). The simple carbon tether analogue **5**g without the *gem*disubstituent effect also provided the bicyclic derivative 6g in 53% yield (entry 6). Nitrogen congener 5h produced the corresponding aza-compound 6h in 60% yield (entry 7). It was shown that having a phenylsulfonyl substituent on the allenyl moiety was not essential for this transformation. Thus, the ringclosing reaction of phosphonate derivative 5i proceeded well to produce 6i in 69% yield (entry 8). Furthermore, the ring-closing reaction of allenylcyclopentanes having alkyl substituents such as butyl (5j), isopropyl (5k), tert-butyl (5l), and benzyl groups (5m) on the allenyl moiety also produced the corresponding

Table 2. Formation of Bicyclo[7.4.0]tridecatrienes 6 from Allenylcyclopentane-alkynes 5

	,		, , ,		
$X = \frac{R^{1}}{10 \text{ mol}\% \text{ RhCl}(PPh_{3})_{3}} + \frac{R^{2}}{10 m$					
		5	6		
substrate	\mathbb{R}^1	\mathbb{R}^2	Х	time (h)	product ^{<i>a</i>} and yield ^{<i>b</i>}
5b	SO ₂ Ph	Me	$C(SO_2Ph)_2$	0.2	6b (85%)
5c	SO ₂ Ph	Me	$C(MOM)_2$	2	6c (85%)
5d	SO ₂ Ph	Me	$C(CH_2O)_2CMe_2$	2	6d (78%)
5e	SO ₂ Ph	Me	$C(CH_2OH)_2$	0.75	6e (51%)
5f	SO ₂ Ph	Me	$C(CH_2O_2CC_6H_4-NO_2-p)_2$	$0.2^{c,d}$	6f (53%)
5g	SO ₂ Ph	Me	CH ₂	4^e	6 g (53%)
5h	SO ₂ Ph	Me	NTs	0.2^{e}	6h (60%)
5i	$P(O)(OEt)_2$	Me	$C(CO_2Me)_2$	4	6i (69%)
5j	"Bu	Me	$C(CO_2Me)_2$	1	6j (71%)
5k	ⁱ Pr	Me	$C(CO_2Me)_2$	1.5	6k (73%)
51	^t Bu	Me	$C(CO_2Me)_2$	\mathbf{l}^{f}	6l (75%)
5m	Bn	Me	$C(CO_2Me)_2$	1.5	6m (58%)
5n	Ph	Me	$C(CO_2Me)_2$	1	6n (62%)
50	SO ₂ Ph	"Bu	$C(CO_2Me)_2$	3	60 (47%)
5p	SO ₂ Ph	CH ₂ OBn	$C(CO_2Me)_2$	20^{c}	6p (40%)
	5b 5c 5d 5e 5f 5g 5h 5i 5j 5k 5l 5k 5l 5m 5n 50	5b SO ₂ Ph 5c SO ₂ Ph 5d SO ₂ Ph 5e SO ₂ Ph 5f SO ₂ Ph 5g SO ₂ Ph 5g SO ₂ Ph 5h SO ₂ Ph 5i P(O)(OEt) ₂ 5j "Bu 5k 'Pr 5l Bn 5n Ph 5o SO ₂ Ph	\mathbf{F}^{1} \mathbf{F}^{2} substrate \mathbf{R}^{1} \mathbf{R}^{2} \mathbf{Sb} $\mathbf{SO}_{2}\mathbf{Ph}$ \mathbf{Me} \mathbf{Sc} $\mathbf{SO}_{2}\mathbf{Ph}$ \mathbf{Me} \mathbf{Sd} $\mathbf{SO}_{2}\mathbf{Ph}$ \mathbf{Me} \mathbf{Se} $\mathbf{SO}_{2}\mathbf{Ph}$ \mathbf{Me} \mathbf{Sf} $\mathbf{SO}_{2}\mathbf{Ph}$ \mathbf{Me} \mathbf{Sg} $\mathbf{SO}_{2}\mathbf{Ph}$ \mathbf{Me} \mathbf{Sh} $\mathbf{SO}_{2}\mathbf{Ph}$ \mathbf{Me} \mathbf{Si} $\mathbf{P}(\mathbf{O})(\mathbf{OEt})_{2}$ \mathbf{Me} \mathbf{Si} $\mathbf{P}(\mathbf{O})(\mathbf{OEt})_{2}$ \mathbf{Me} \mathbf{Si} $^{2}\mathbf{Pr}$ \mathbf{Me} \mathbf{Si} $^{2}\mathbf{Bu}$ \mathbf{Me} \mathbf{Sm} \mathbf{Bn} \mathbf{Me} \mathbf{Sm} \mathbf{Ph} \mathbf{Me} \mathbf{So} $\mathbf{SO}_{2}\mathbf{Ph}$ $^{2}\mathbf{Bu}$	I' IO mol% RhCl(PPh_3)_3substrateR ¹ R ² XSbSO_2PhMeC(SO_2Ph)_2ScSO_2PhMeC(MOM)_2SdSO_2PhMeC(CH_2O)_2CMe_2SeSO_2PhMeC(CH_2O)_2CMe_2SeSO_2PhMeC(CH_2O)_2CMe_2SfSO_2PhMeC(CH_2O_2CC_6H_4-NO_2-p)_2SgSO_2PhMeCH_2ShSO_2PhMeCH2SiP(O)(OEt)_2MeC(CO_2Me)_2SiP(D)(OEt)_2MeC(CO_2Me)_2SiPinMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2SiPhMeC(CO_2Me)_2	Find the constraint of mol% RhCl(PPh3)3substrateR ¹ R ² Xtime (h)SbSO2PhMeC(SO2Ph)20.2ScSO2PhMeC(MOM)22SdSO2PhMeC(CH2O)2CMe22SeSO2PhMeC(CH2OH)20.75SfSO2PhMeC(CH2OQCe6H4-NO2-P)20.2 ^{c,d} SgSO2PhMeC(CH2O2Ce6H4-NO2-P)20.2 ^{c,d} SgSO2PhMeCH24 ^e ShSO2PhMeCCO3Me)21SiP(O)(OEt)2MeC(CO3Me)21Sk'PrMeC(CO2Me)21.5Si'BuMeC(CO2Me)21.5SiBnMeC(CO2Me)21.5SnBnMeC(CO2Me)21.5SnPhMeC(CO2Me)21.5SoSO2Ph"BuC(CO2Me)23

^{*a*}Compound **6** was isolated as a pure form, and a mixture of spiro derivative 7 and unknown compounds was detected in small amount. ^{*b*}Isolated yield. ^{*c*}Refluxed in xylene. ^{*d*}0.05 M solvent was used. ^{*e*}Refluxed in toluene (0.025 M). ^{*f*}Refluxed in toluene (0.1 M).



19581

bicyclo[7.4.0] products **6j** (71%), **6k** (73%), **6l** (75%), and **6m** (58%), respectively (entries 9–12). In addition, the phenyl derivative **5n** was found to furnish the desired product **6n** in 62% yield (entry 13). Allenylcyclopentane derivative **5o**, possessing a butyl substituent ($\mathbb{R}^2 = ^n\mathbb{B}u$) at the allenic position instead of a methyl group, required a longer reaction time (3 h), and the yield of **6o** decreased (47%) (entry 14). In addition, the benzyloxymethyl congener **5p** ($\mathbb{R}^2 = \mathrm{CH}_2\mathrm{OBn}$) required more drastic conditions (heating at reflux in xylene for 20 h) to complete consumption of the starting material, and the bicyclic compound **6p** was obtained in a rather low yield (40%) (entry 15).

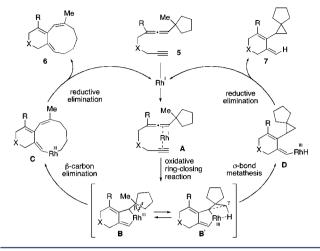
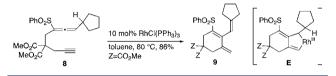
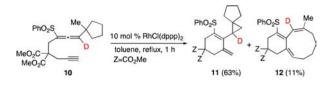

We isolated the novel spiro[2.4]heptane derivative 7a from Rh^I-catalyzed cycloaddition of 5a (Table 1). In particular, 7a was obtained in 52% yield as a major product when treated with RhCl(dppp)₂. To improve the chemical yield of 7a, we reinvestigated this reaction and found that a lower reaction temperature (heated at reflux in toluene) is enough to give 7a in a satisfactory yield. Indeed, 7a was obtained in 81% yield along with **6a** in 5% yield (Table 3, entry 1). Several other

Table 3. Formation of Spiro[2.4] heptane Derivatives 7 fromAllenylcyclopentane-alkynes 5



allenylcyclopentane-alkynes were examined to ascertain the generality of the formation of the spiro 2.4 heptane skeleton. Upon exposure to the standard conditions, 5e, having two free hydroxyl groups, smoothly underwent the ring-closing reaction to produce $7e^{14}$ in 78% yield (entry 2). Bis(*p*-nitrobenzoyloxymethyl) derivative 5f was heated at reflux in toluene in the presence of RhCl(dppp)₂ for 1 h to afford the spiro [2.4] heptane 7f in 76% yield along with 6f in 5% yield (entry 3). Bis(pchlorobenzoyloxymethyl) compound 5q provided 7q in 60% yield as the sole isolated product (entry 4). Nitrogen-containing substrate 5h under similar conditions produced 7h in a lower yield (50%) (entry 5). Site-selective C γ -H bond activation of the methyl group rather than the methylene moiety of the cyclopentane framework led to exclusive formation of 7 instead of 7', although the reasonable explanation is still uncertain. Thus, it may be concluded that transformation of the allenylcyclopentane-alkynes 5 into spiro[2.4]heptane derivatives 7 consistently occurred when treated with RhCl(dppp)₂.

Formation of the [7+2] product **6** is tentatively rationalized on the basis of the proposed mechanism for the ring cleavage of the allenylcyclobutane.^{12b} Initial coordination of **5** with Rh^I would occur between an allenic distal double bond and an alkyne to form the intermediate **A**, which should immediately collapse to the rhodabicyclo[4.3.0] intermediate **B** via the oxidative ringclosing reaction (Scheme 2). This intermediate **B** would undergo Scheme 2. Plausible Mechanisms



Scheme 3. Rh^I-Catalyzed Cycloisomerization of 8

 β -C elimination,⁶ presumably assisted by release of the ring strain of the cyclopentane (6.3 kcal/mol),¹¹ resulting in formation of the 10-membered bicyclic rhodacycle C. Subsequent reductive elimination of C would give the final product 6. The intermediacy of rhodabicyclo [4.3.0] intermediate B is strongly supported by the following experimental result. Upon exposure to the standard conditions, substrate 8, having a hydrogen at the allenic position, afforded the monocyclic product 9 in 86% yield (Scheme 3). Formation of 9 could be well rationalized in terms of β -hydride elimination¹⁵ of intermediate **E**, which possesses the common rhodabicyclo[4.3.0] intermediate of **B**. As part of our ongoing program, Oonishi and Sato¹⁶ have very recently reported similar cyclopropanation of allenynes having tert-butyl group at the allenic terminus. Based on their proposed mechanism, the plausible mechanism for the production of the spiro[2.4]heptane derivatives 7 from the common rhodabicyclo[4.3.0] intermediate B could be tentatively considered as follows. The $C\gamma - H^{17}$ bond of **B** would be activated with the aid of Rh^{III} when the C–H bond of the methyl group is placed on the same plane as the C–Rh^{III} bond (**B**') (Scheme 2). A type of σ -bond metathesis^{17,18} would then occur between the activated C– H bond and C-Rh^{III} bonds, ending with the formation of the 3membered intermediate D, which should collapse to the final product 7. Finally, an experiment with deuterated substrate 10 was performed in order to obtain some information on the mechanism for the formation of 7 (Scheme 4). A solution of 10 in toluene in the presence of a catalytic amount of $RhCl(dppp)_2$ was heated at reflux for 1 h to afford the spiro[2.4]heptane

Scheme 4. Deuterium-Labeling Experiment of Allenylcyclopentane-Alkynes 10

Journal of the American Chemical Society

derivative 11 and the 9-membered compound 12 in 63% and 11% yields, respectively. It became apparent that deuterium was exclusively incorporated at the allylic position (on the cyclopropane ring) of 11. This result might support the mechanism depicted in Scheme 2.

In summary, we have succeeded in the unprecedented C–C bond cleavage of the simple unactivated cyclopentane ring. The *in situ* generated 8-rhodabicyclo[4.3.0]nona-1,6-diene intermediate having a cyclopentane at the C₉-position underwent [7+2] cycloaddition through $C\beta$ – $C\gamma$ bond cleavage (β -C elimination) to produce the bicyclo[7.4.0]tridecatriene derivatives in good yields. In addition, by changing the rhodium catalyst, the same 8-rhodabicyclo[4.3.0]nona-1,6-diene intermediate produced the novel spiro[2.4]heptane skeleton via a $C\gamma$ –H bond activation process in a site-selective manner. These results should provide new insights into the chemistry of C_{sp}^{3} – C_{sp}^{3} as well as C_{sp}^{3} –H bond¹⁹ activation. Further studies regarding these two novel aspects, the C–C and C–H bond activations, are currently in progress.

ASSOCIATED CONTENT

S Supporting Information

Experimental procedures, compound characterization data (PDF), and X-ray data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

mukai@p.kanazawa-u.ac.jp

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, for which we are thankful.

REFERENCES

(1) (a) Kulinkovich, O. G. *Chem. Rev.* **2003**, *103*, 2597. (b) Rubina, M.; Gevorgyan, V. *Tetrahedron* **2004**, *60*, 3129. (c) Yu, M.; Pagenkopf, B. L. *Tetrahedron* **2005**, *61*, 321. (d) Rubin, M.; Rubina, M.; Gevorgyan, V. *Chem. Rev.* **2007**, *107*, 3117. (e) Carson, C. A.; Kerr, M. A. *Chem. Soc. Rev.* **2009**, *38*, 3051.

(2) Knowlton, J. W.; Rossini, F. D. J. Res. Natl. Bur. Stand. 1949, 43, 113.

(3) (a) Wender, P. A.; Takahashi, H.; Witulski, B. J. Am. Chem. Soc.
1995, 117, 4720. (b) Wender, P. A.; Husfeld, C. O.; Langkopf, E.; Love, J. A.; Pleuss, N. Tetrahedron 1998, 54, 7203. (c) Wender, P. A.; Sperandio, D. J. Org. Chem. 1998, 63, 4164. (d) Wender, P. A.; Husfeld, C. O.; Langkopf, E.; Love, J. A. J. Am. Chem. Soc. 1998, 120, 1940. (e) Wender, P. A.; Glorius, F.; Husfeld, C. O.; Langkopf, E.; Love, J. A. J. Am. Chem. Soc. 1998, 120, 1940. (e) Wender, P. A.; Glorius, F.; Husfeld, C. O.; Langkopf, E.; Love, J. A. J. Am. Chem. Soc. 1999, 121, 5348. (f) Wender, P. A.; Fuji, M.; Husfeld, C. O.; Love, J. A. Org. Lett. 1999, 1, 137. (g) Wender, P. A.; Dyckman, A. J.; Husfeld, C. O.; Kadereit, D.; Love, J. A.; Rieck, H. J. Am. Chem. Soc. 1999, 121, 10442. (h) Wender, P. A.; Zhang, L. Org. Lett. 2000, 2, 2323. (i) Wender, P. A.; Bi, F. C.; Brodney, M. A.; Gosselin, F. Org. Lett. 2001, 3, 2105. (j) Wender, P. A.; Williams, T. J. Angew. Chem., Int. Ed. 2002, 41, 4550. (k) Gómez, F. J.; Kamber, N. E.; Deschamps, N. M.; Cole, A. P.; Wender, P. A.; Waymouth, R. M. Organometallics 2007, 26, 4541.

(4) Asymmetric version of the Rh^I-catalyzed cycloaddition of vinylcyclopropanes with alkynes, see: (a) Wender, P. A.; Haustedt, L. O.; Lim, J.; Love, J. A.; Williams, T. J.; Yoon, J.-Y. *J. Am. Chem. Soc.* **2006**, *128*, 6302. (b) Shintani, R.; Nakatsu, H.; Takatsu, K.; Hayashi, T. Chem. Eur. J. **2009**, *15*, 8692.

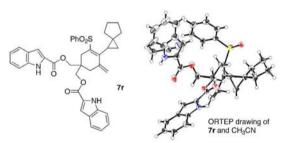
(5) For leading references, see: (a) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am. Chem. Soc. **1996**, 118, 8285. (b) Murakami, M.; Takahashi, K.; Amii, H.; Ito, Y. J. Am. Chem. Soc. **1997**, 119, 9307. (c) Murakami, M.; Itahashi, T.; Amii, H.; Takahashi, K.; Ito, Y. J. Am. Chem. Soc. **1998**, 120, 9949. (d) Murakami, M.; Tsuruta, T.; Ito, Y. Angew. Chem., Int. Ed. **2000**, 39, 2484. (e) Murakami, M.; Itahashi, T.; Ito, Y. J. Am. Chem. Soc. **2002**, 124, 13976. (f) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. **2005**, 127, 6932. (g) Matsuda, T.; Makino, M.; Murakami, M. Angew. Chem., Int. Ed. **2005**, 44, 4608. (h) Matsuda, T.; Shigeno, M.; Maruyama, Y.; Murakami, M. Chem. Lett. **2007**, 36, 744.

(6) For recent reviews, see: (a) Murakami, M.; Matsuda, T. *Chem. Commun.* **2011**, 47, 1100. (b) Aïssa, C. *Synthesis* **2011**, 3389. (c) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. *Angew. Chem., Int. Ed.* **2011**, 50, 7740. (d) Cramer, N.; Seiser, T. *Synlett* **2011**, 449.

(7) (a) Wender, P. A.; Correa, A. G.; Sato, Y.; Sun, R. J. Am. Chem. Soc. 2000, 122, 7815. (b) Murakami, M.; Ashida, S.; Matsuda, T. J. Am. Chem. Soc. 2006, 128, 2166. (c) Liu, L.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2012, 51, 2485 and references therein.

(8) (a) Wender, P. A.; Deschamps, N. M.; Sun, R. Angew. Chem., Int. Ed. 2006, 45, 3957. (b) Trost, B. M.; Xie, J. J. Am. Chem. Soc. 2008, 130, 6231. (c) Seiser, T.; Cramer, N. Angew. Chem., Int. Ed. 2008, 47, 9294. (d) Ishida, N.; Sawano, S.; Murakami, M. Chem. Commun. 2012, 48, 1973 and references therein.

(9) Crépin, D.; Dawick, J.; Aïssa, C. Angew. Chem., Int. Ed. 2010, 49, 620.


(10) (a) Huffman, M. A.; Liebeskind, L. S. J. Am. Chem. Soc. **1993**, 115, 4895. (b) Murakami, M.; Takahashi, K.; Amii, H.; Ito, Y. J. Am. Chem. Soc. **1997**, 119, 9307.

(11) Kaarsemaker, S.; Coops, J. Recl. Trav. Chim. Pays-Bas 1952, 71, 261.

(12) (a) Inagaki, F.; Sugikubo, K.; Miyashita, Y.; Mukai, C. Angew. Chem., Int. Ed. 2010, 49, 2206. (b) Inagaki, F.; Sugikubo, K.; Oura, Y.; Mukai, C. Chem. Eur. J. 2011, 17, 9062.

(13) Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735.

(14) The spiro structure of 7 was unambiguously established by X-ray analysis of the bis(indol-2-ylcarbonyloxymethyl) derivative 7**r**, which was derived from 7**e** under standard esterification conditions (details in SI).

(15) (a) Brummond, K. M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc.
2002, 124, 15186. (b) Mukai, C.; Inagaki, F.; Yoshida, T.; Kitagaki, S. *Tetrahedron Lett.* 2004, 45, 4117. (c) Mukai, C.; Inagaki, F.; Yoshida, T.; Yoshitani, K.; Hara, Y.; Kitagaki, S. J. Org. Chem. 2005, 70, 7159. (d) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954.

(16) Oonishi, Y.; Kitano, Y.; Sato, Y. Angew. Chem., Int. Ed. 2012, 51, 7305.

(17) Cγ–H abstraction by metal atom; for example, see: Itazaki, M.; Yoda, C.; Nishihara, Y.; Osakada, K. *Organometallics* **2004**, *23*, 5402.

(18) C γ -H activation, followed by the formation of cyclopropane; for example, see: Mallien, M.; Haupt, E. T. K.; tom Dieck, H. *Angew. Chem., Int. Ed.* **1988**, *27*, 1062.

(19) (a) Ye, L.; Wang, Y.; Aue, D. H.; Zhang, L. J. Am. Chem. Soc. **2012**, 134, 31. (b) Hashmi, A. S. K.; Braun, I.; Nösel, P.; Schädlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. **2012**, 51, 4456.